Mark Scheme (Results) January 2010

GCE

Further Pure Mathematics FP3 (6676)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http:/ / www.edexcel.com/ Aboutus/ contact-us/

January 2010

All the material in this publication is copyright
© Edexcel Ltd 2010

$$
\begin{gathered}
\text { January } 2010 \\
\text { FP3 Further Pure Mathematics } 6676 \\
\text { Mark Scheme }
\end{gathered}
$$

Question Number	Scheme	Marks
Q1	$\left.\begin{array}{l}\text { Calculate }\left(\frac{d y}{d x}\right)_{0}=2 \sin 1=1.683 \\ x=0.1, \quad y_{1}=1+0.1(2 \sin 1)=1.1683 \text { or awrt } \\ x=0.2, \quad y_{2}=1.1683+0.1\left(0.1^{2}+2 \sin 1.1683\right)\end{array}\right)=1.3533$ awrt	M1 A1 \quad M1 A1
	At \quadB1 may be implied 3dp lose last A1	

Question Number	Scheme	Marks
Q3 (a)	$\begin{align*} \cos 5 \theta & =\operatorname{Re}\left[(\cos \theta+i \sin \theta)^{5}\right] \\ & =\cos ^{5} \theta+10 \cos ^{3} \theta \mathrm{i}^{2} \sin ^{2} \theta+5 \cos \theta \mathrm{i}^{4} \sin ^{4} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \\ \cos 5 \theta & =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \tag{D} \end{align*}$	M1A1 M1 M1 A1 (5)
(b)	$32 x^{5}-40 x^{3}+10 x+1=0 \Rightarrow 16 x^{5}-20 x^{3}+5 x=-\frac{1}{2}$ so solve $\cos 5 \theta=-\frac{1}{2}$ $5 \theta=\frac{2 \pi}{3}, \quad$ and $\frac{4 \pi}{3}$ (ignore extra solutions) So $x=\cos \theta$, where $\theta=$ their $\frac{2 \pi}{15}$ or $\frac{4 \pi}{15}$ So $x=0.914$ and 0.669	M1 A1, A1ft M1 A1, A1 (6) [11]
	In part (b) award M1 for $+/-1 / 2$ A1 ft is for second solution consistent with first Accept answers which round to.. Ignore wrong or extra answers. Lose final A1 for 2dp	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q4 (i) \& \begin{tabular}{l}
\[
\left(\begin{array}{lll}
1 \& 0 \& 0 \\
1 \& 1 \& 0 \\
3 \& 2 \& 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 \& 0 \& 0 \\
n \& 1 \& 0 \\
n(n+2) \& 2 n \& 1
\end{array}\right)=\left(\begin{array}{lll}
1 \& 0 \& 0 \\
1 \& 1 \& 0 \\
3 \& 2 \& 1
\end{array}\right) \text { when } n=1 \quad \therefore \text { true for } n=1
\] \\
Assume true for \(n=k\), then \(\left(\begin{array}{lll}1 \& 0 \& 0 \\ 1 \& 1 \& 0 \\ 3 \& 2 \& 1\end{array}\right)^{k}=\left(\begin{array}{ccc}1 \& 0 \& 0 \\ k \& 1 \& 0 \\ k(k+2) \& 2 k \& 1\end{array}\right)\)
\[
\left(\begin{array}{lll}
1 \& 0 \& 0 \\
1 \& 1 \& 0 \\
3 \& 2 \& 1
\end{array}\right)^{k+1}=\left(\begin{array}{lll}
1 \& 0 \& 0 \\
1 \& 1 \& 0 \\
3 \& 2 \& 1
\end{array}\right)\left(\begin{array}{ccc}
1 \& 0 \& 0 \\
k \& 1 \& 0 \\
k(k+2) \& 2 k \& 1
\end{array}\right) \text { or }\left(\begin{array}{lll}
1 \& 0 \& 0 \\
1 \& 1 \& 0 \\
3 \& 2 \& 1
\end{array}\right)^{k+1}=\left(\begin{array}{ccc}
1 \& 0 \& 0 \\
k \& 1 \& 0 \\
k(k+2) \& 2 k \& 1
\end{array}\right)\left(\begin{array}{lll}
1 \& 0 \& 0 \\
1 \& 1 \& 0 \\
3 \& 2 \& 1
\end{array}\right)
\] \\
i.e. \(\left(\begin{array}{lll}1 \& 0 \& 0 \\ 1 \& 1 \& 0 \\ 3 \& 2 \& 1\end{array}\right)^{k+1}=\left(\begin{array}{ccc}1 \& 0 \& 0 \\ 1+k \& 1 \& 0 \\ \{3+2 k+k(k+2)\} \& 2 k+2 \& 1\end{array}\right)=\left(\begin{array}{ccc}1 \& 0 \& 0 \\ 1+k \& 1 \& 0 \\ \left\{3+4 k+k^{2}\right\} \& 2 k+2 \& 1\end{array}\right)\)
\[
=\left(\begin{array}{ccc}
1 \& 0 \& 0 \\
1+k \& 1 \& 0 \\
(k+1)(k+3) \& 2 k+2 \& 1
\end{array}\right)=\left(\begin{array}{ccc}
1 \& 0 \& 0 \\
n \& 1 \& 0 \\
n(n+2) \& 2 n \& 1
\end{array}\right) \text { with } n=k+1
\] \\
(\(\therefore\) true for \(n=k+1\) if true for \(n=k\)) \(\therefore\) true for \(n \in \mathbf{Z}^{+}\)by induction.
\end{tabular} \& B1

M1
M1
M1
A1
A1

\hline (ii) \& | Let $u_{n}=2^{3 n+1}+5$, then $u_{1}=21$ which is divisible by $7 \therefore$ true for $n=1$ |
| :--- |
| Assume true for $n=k$, then $u_{k}=2^{3 k+1}+5$ is divisible by 7 |
| Consider $u_{k+1}-u_{k}=\left(2^{3(k+1)+1}+5\right)-\left(2^{3 k+1}+5\right)=2^{3 k+1}\left(2^{3}-1\right)=2^{3 k+1} \times 7$ |
| As u_{k} and $u_{k+1}-u_{k}$ are both divisible by $7 \therefore u_{k+1}$ is divisible by 7 |
| (\therefore true for $n=k+1$ if true for $n=k$) \therefore true for $n \in \mathbf{Z}^{+}$by induction | \& | B1 |
| :--- |
| M1, M1, A1 |
| A1 cso |
| (5) |
| [10] |

\hline Alternatives for (ii) \& | Note: Accuracy marks only depend on first M1 Show that $u_{0}=7$ satisfies condition for $n=0$, could earn first B1 |
| :--- |
| Also $u_{k}=2^{3 k+1}+5$ is divisible by $7 \Rightarrow 2^{3 k+1}+5=7 k \Rightarrow 2^{3 k+1}=7 k-5$ So $2^{3 k+4}+5=8(7 k-5)+5=7(8 k-5) \quad$ So divisible by 7 \therefore true for $n \in \mathbf{Z}^{+}$by induction | \& | M1 |
| :--- |
| M1 A1 |
| A1 cso |

\hline
\end{tabular}

Question Number	Scheme	Marks
Q6 (a)	The eigenvalues satisfy the equation $\|\mathbf{M}-\lambda \mathbf{I}\|=0$ so $(11-\lambda)(1-\lambda)-75=0$ $\therefore \lambda^{2}-12 \lambda-64=0 \text { so } \lambda=16 \text { or }-4 .$	M1 A1 M1 A1 (4)
(b)	$\begin{aligned} & \lambda=16:\left(\begin{array}{cc} 11 & -5 \sqrt{3} \\ -5 \sqrt{3} & 1 \end{array}\right)\binom{x}{y}=16\binom{x}{y} \text { so an eigenvector is } k\binom{\sqrt{3}}{-1} \\ & \lambda=-4:\left(\begin{array}{cc} 11 & -5 \sqrt{3} \\ -5 \sqrt{3} & 1 \end{array}\right)\binom{x}{y}=-4\binom{x}{y} \text { so an eigenvector is } k^{\prime}\binom{1}{\sqrt{3}} \end{aligned}$	M1 A1 M1 A1 (4)
(c)	$\mathbf{P}=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} k & \frac{1}{2} k^{\prime} \\ \frac{-1}{2} k & \frac{\sqrt{3}}{2} k^{\prime}\end{array}\right)$, where $k= \pm 1$ and $k^{\prime}= \pm 1$	M1, A1
(d)	$\begin{aligned} & \mathbf{P}^{-1}=\left(\begin{array}{cc} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right) \text { o.e. } \\ & \mathbf{P}^{-1} \mathbf{M P}=\left(\begin{array}{cc} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right)\left(\begin{array}{cc} 11 & -5 \sqrt{3} \\ -5 \sqrt{3} & 1 \end{array}\right)\left(\begin{array}{cc} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right)=\left(\begin{array}{cc} 16 & 0 \\ 0 & -4 \end{array}\right) \end{aligned}$	M1 A1ft M1 A1ft (4) [14]

Question Number	Scheme	Marks
Q7 (a)	$\begin{aligned} & (x-4)^{2}+(y+4)^{2}=4\left\{(x-1)^{2}+(y+1)^{2}\right\} \\ & \therefore 3 x^{2}+3 y^{2}=24 \end{aligned}$ This is a circle with $r^{2}=8$ So $\|z\|=k$ and $k=2 \sqrt{2}$	M1 A1 A1 B1 B1 (5)
(b)	 Circle centre O Point at $(1,-1)$ Point at (4,-4)	B1 B1 B1 (3)
(c)	 Method of solution: e.g. diameter shown $\begin{aligned} & 4 \sqrt{2}-r \\ & 4 \sqrt{2}+r \end{aligned}$	M1 A1ft A1ft (3)
(d)	Let $z=\sqrt{8} \mathrm{e}^{\mathrm{i} \theta}$, then $w=\sqrt{8}\left(e^{i \theta}+e^{-i \theta}\right)$ i.e. $w=2 \sqrt{8}(\cos \theta)$ So the locus is part of the real axis, i.e. $\operatorname{Im}(w)=0$ And as $-1<\cos <1$, so the end points are $w=4 \sqrt{2}$ and $w=-4 \sqrt{2}$.M1 A1 ft on r B1 M1 A1 (5)
	Alternative method (d) Let $z=x+\mathrm{i} y$ and put $x^{2}+y^{2}=8$ to give $w=2 x+0$ for M1 A1	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@inneydirect.com
January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

