

Mark Scheme (Results) January 2010

GCE

Further Pure Mathematics FP3 (6676)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/ Aboutus/ contact-us/

January 2010

All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 FP3 Further Pure Mathematics 6676 Mark Scheme

Question Number	Scheme	Marks
Q1	Calculate $\left(\frac{dy}{dx}\right)_0 = 2\sin 1 = 1.683$	B1
	At $x = 0.1$, $y_1 = 1 + 0.1$ (2 sin1) = 1.1683 or awrt	M1 A1
	$x = 0.2$, $y_2 = 1.1683 + 0.1 (0.1^2 + 2\sin 1.1683) = 1.3533$ awrt	M1 A1 [5]
	B1 may be implied 3dp lose last A1	

Question Number	Scheme	Marks
Q2 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 \ln x + x^2$	M1 A1,
	$\frac{d^2 y}{dx^2} = 6x \ln x + 5x$, and $\frac{d^3 y}{dx^3} = 6 \ln x + 11$	M1A1ft, A1 (5)
(b)	Use of $x^3 \ln x = f(1) + (x-1)f'(1) + \frac{1}{2}(x-1)^2 f''(1) + \frac{1}{6}(x-1)^3 f'''(1)$	M1
	Evaluates $f(1)$, $f'(1)$, $f''(1)$ and $f'''(1)$	M1
	So $x^3 \ln x = (x-1) + \frac{5}{2}(x-1)^2 + \frac{11}{6}(x-1)^3$	A1 (3) [8]
	(a) M1 is attempt at derivative involving product rule	

Question Number	Scheme	Marks
Q3 (a)	$\cos 5\theta = \text{Re} \left[(\cos \theta + i \sin \theta)^5 \right]$	
	$= \cos^5 \theta + 10\cos^3 \theta i^2 \sin^2 \theta + 5\cos \theta i^4 \sin^4 \theta$	M1A1
	$= \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$ $= \cos^5 \theta - 10\cos^3 \theta (1 - \cos^2 \theta) + 5\cos \theta (1 - \cos^2 \theta)^2$	M1
		M1
	$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta \tag{D}$	A1 (5)
(b)	$32x^{5} - 40x^{3} + 10x + 1 = 0 \implies 16x^{5} - 20x^{3} + 5x = -\frac{1}{2} \text{ so solve}$ $\cos 5\theta = -\frac{1}{2}$	M1
	$5\theta = \frac{2\pi}{3}$, and $\frac{4\pi}{3}$ (ignore extra solutions)	A1, A1ft
	So $x = \cos\theta$, where $\theta = \text{ their } \frac{2\pi}{15} \text{ or } \frac{4\pi}{15}$	M1
	So $x = 0.914$ and 0.669	A1, A1 (6) [11]
	In part (b) award M1 for +/- ½ A1 ft is for second solution consistent with first Accept answers which round to Ignore wrong or extra answers. Lose final A1 for 2dp	

Question		
Number	Scheme	Marks
Q4 (i)	$ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}^{n} = \begin{pmatrix} 1 & 0 & 0 \\ n & 1 & 0 \\ n(n+2) & 2n & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \text{ when } n = 1 : \text{true for } n = 1 $ Assume true for $n = k$, then $ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}^{k} = \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ k(k+2) & 2k & 1 \end{pmatrix} $	B1
	$\begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$ $\begin{pmatrix} k(k+2) & 2k & 1 \end{pmatrix}$	
	$ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ k(k+2) & 2k & 1 \end{pmatrix} $ Or $ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ k(k+2) & 2k & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} $	M1
	i.e. $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 0 & 0 \\ 1+k & 1 & 0 \\ {3+2k+k(k+2)} & 2k+2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1+k & 1 & 0 \\ {3+4k+k^2} & 2k+2 & 1 \end{pmatrix}$	M1
	$= \begin{pmatrix} 1 & 0 & 0 \\ 1+k & 1 & 0 \\ (k+1)(k+3) & 2k+2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ n & 1 & 0 \\ n(n+2) & 2n & 1 \end{pmatrix} \text{ with } n = k+1$ (: true for $n = k + 1$ if true for $n = k$): true for $n \in \mathbb{Z}^+$ by induction.	A1 A1
(ii)		(5)
(11)	Let $u_n = 2^{3n+1} + 5$, then $u_1 = 21$ which is divisible by 7 : true for $n = 1$	B1
	NII N	M1, M1, A1
	As u_k and u_{k+1} - u_k are both divisible by 7 :. u_{k+1} is divisible by 7 (: true for $n = k + 1$ if true for $n = k$) : true for $n \in \mathbb{Z}^+$ by induction	A1 cso (5) [10]
Alternatives for (ii)	Note: Accuracy marks only depend on first M1 Show that $u_0 = 7$ satisfies condition for $n = 0$, could earn first B1	
	Also $u_k = 2^{3k+1} + 5$ is divisible by $7 \Rightarrow 2^{3k+1} + 5 = 7k \Rightarrow 2^{3k+1} = 7k - 5$ So $2^{3k+4} + 5 = 8(7k-5) + 5 = 7(8k-5)$ So divisible by 7	M1 M1 A1
	\therefore true for $n \in \mathbf{Z}^+$ by induction	A1 cso

Question Number	Scheme	Marks
Q5 (a)	$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 7 & 9 \\ -1 & 3 & 1 \end{vmatrix} = -20\mathbf{i} - 10\mathbf{j} + 10\mathbf{k} = -10(2\mathbf{i} + \mathbf{j} - \mathbf{k})$	M1 A1 (2)
(b)	The plane has equation $\mathbf{r.n} = \mathbf{a.n}$, which is $-2x - y + z =$	M1
	i.e. $2x + y - z = 4$ o.a.e.	A1
		(2)
(c)	The line l_1 passes through the point $(1, 0, -2)$ and this lies in the plane	B1
	l_1 has direction a which is perpendicular to $\mathbf{a} \times \mathbf{b}$ so l_1 is parallel to the plane .(Thus l_1 lies in the plane.) Or $2(1+\lambda)+7\lambda-(9\lambda-2)=4$ for all values of λ , so line lies in plane	B1 (2)
(d)	r.(2i + j - k) = (i + j + k) . (2i + j - k)	M1
	i.e. $2x + y - z = 2$ o.a.e	A1 (2)
(e)	Either Distance from $2x + y - z = 4$ to origin is $\frac{4}{\sqrt{(2^2 + (-1)^2 + 1^2)}} = \frac{4}{\sqrt{6}}$	M1
	Or Distance from $2x + y - z = 2$ to origin is $\frac{2}{\sqrt{(2^2 + (-1)^2 + 1^2)}} = \frac{2}{\sqrt{6}}$	
	So distance between the planes is $\frac{4}{\sqrt{6}} - \frac{2}{\sqrt{6}} = \frac{2}{\sqrt{6}} \left(= \frac{\sqrt{6}}{3} \right)$	M1, A1o.a.e (3)
		[11]

Ques Num		Scheme	Marks
Q6	(a)	The eigenvalues satisfy the equation $ \mathbf{M} - \lambda \mathbf{I} = 0$ so $(11 - \lambda)(1 - \lambda) - 75 = 0$	M1 A1
		$\therefore \lambda^2 - 12\lambda - 64 = 0$ so $\lambda = 16$ or -4 .	M1 A1 (4)
	(b)	$\lambda = 16 : \begin{pmatrix} 11 & -5\sqrt{3} \\ -5\sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 16 \begin{pmatrix} x \\ y \end{pmatrix} \text{ so an eigenvector is } k \begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix}$	M1 A1
		$\lambda = -4: \begin{pmatrix} 11 & -5\sqrt{3} \\ -5\sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -4 \begin{pmatrix} x \\ y \end{pmatrix} \text{ so an eigenvector is } k' \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$	M1 A1 (4)
	(c)	$\mathbf{P} = \begin{pmatrix} \frac{\sqrt{3}}{2}k & \frac{1}{2}k' \\ \frac{-1}{2}k & \frac{\sqrt{3}}{2}k' \end{pmatrix}, \text{ where } k = \pm 1 \text{ and } k' = \pm 1$	M1, A1 (2)
	(d)	$\mathbf{P}^{-1} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \text{ o.e. }$	M1 A1ft
		$\mathbf{P}^{-1}\mathbf{M}\mathbf{P} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 11 & -5\sqrt{3} \\ -5\sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} 16 & 0 \\ 0 & -4 \end{pmatrix}$	M1 A1ft (4)

Question Number	Scheme	Marks
Q7 (a)	$(x-4)^2 + (y+4)^2 = 4\{(x-1)^2 + (y+1)^2\}$	M1 A1
	$\therefore 3x^2 + 3y^2 = 24$	A1
	This is a circle with $r^2 = 8$	B1
	So $ z = k$ and $k = 2\sqrt{2}$	B1 (5)
(b)	Circle centre O Point at (1, -1) Point at (4,-4)	B1 B1 B1 (3)
(c)	Method of solution: e.g. diameter shown $4\sqrt{2} - r$ $4\sqrt{2} + r$	M1 A1ft A1ft (3)
(d)	Let $z = \sqrt{8}e^{i\theta}$, then $w = \sqrt{8}(e^{i\theta} + e^{-i\theta})$.M1
	i.e. $w = 2\sqrt{8}(\cos\theta)$ So the locus is part of the real axis, i.e. Im $(w) = 0$ And as $-1 < \cos < 1$, so the end points are $w = 4\sqrt{2}$ and $w = -4\sqrt{2}$	A1 ft on <i>r</i> B1 M1 A1 (5) [16]
	Alternative method (d) Let $z = x + i y$ and put $x^2 + y^2 = 8$ to give $w = 2x + 0$ for M1 A1	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH